Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

K. Ravikumar, ${ }^{\text {a }}$ B. Sridhar, ${ }^{\text {a }}$ M. Mahesh ${ }^{\text {b }}$ and V. V. Narayana Reddy ${ }^{\text {b }}$

${ }^{\text {a }}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\mathbf{b}}$ Organic Chemistry
Division-II, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail:
ravikumar_iict@yahoo.co.in

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.127$
Data-to-parameter ratio $=13.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-\{3-(4-Methylphenyl)-6-[(Z)-(4-methylphenyl)-methylidene]-2-phenyl-2-azabicyclo[2.2.2]oct-5-ylidene\}aniline

The title compound, $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2}$, is formed as a result of the Diels-Alder reaction of N -benzylideneaniline and cyclo-hexen-2-one, catalyzed by zirconium tetrachloride. The molecule exists as the Z isomer. All three rings in the azabicyclo[2.2.2]octane system adopt boat conformations. The crystal packing is stabilized by van der Waals forces.

Comment

The azabicyclo[2.2.2] (isoquinuclidine) ring system has received an increasing amount of attention, mainly due to its occurrence in the natural products dioscorine and ibogaine. In addition, azabicyclo[2.2.2]octanone may serve as a precursor for the synthesis of naturally occurring piperidine alkaloids of the prosopis family (Birkinshaw \& Holmes, 1987; Birkinshaw et al., 1988). We have recently synthesized and purified azabicyclo[2.2.2]octane derivatives using an imino Diels-Alder reaction with ZrCl_{4} as a 'green' catalyst (Mahesh, 2005). N Benzylideneaniline was reacted with cyclohexen-2-one in the presence of zirconium tetrachloride in dichloromethane at ambient temperature, to afford the title 2-azabicyclo[2,2,2]octane derivative, (I). The present X-ray structure determination was carried out in order to confirm the identity of (I) and to obtain more detailed information on the conformation of the molecule.

Received 13 June 2005
Accepted 21 June 2005
Online 30 June 2005
Imino Diels-Alder adducts. VII

In the molecule of (I), two benzene rings are directly connected to the azabicyclic system and the other two are connected through a double-bond linkage as an extended 'arm' (Fig. 1). In all essential details, the molecular geometry

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
of (I) is not very different from the values found in the literature for other azabicyclo[2.2.2] systems (Sonar et al., 2003, 2004). The disposition of the double bonds $\mathrm{C} 6=\mathrm{C} 27$ and $\mathrm{C} 5=\mathrm{N} 3$ (Table 1) with respect to the azabicyclo[2.2.2] ring system affords the possibility of E and Z isomers. In the structure of (I), the C27-C28 bond is in a trans configuration with respect to the $\mathrm{C} 5-\mathrm{C} 6$ bond $[\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 27-\mathrm{C} 28=$ $\left.175.9(1)^{\circ}\right]$. Similarly, the N3-C21 bond is also in a trans configuration with respect to the C5-C6 bond [C5-C6$\left.\mathrm{N} 3-\mathrm{C} 21=175.4(1)^{\circ}\right]$. As observed in similar azabicyclo structures, deviations from the ideal bond-angle geometry around the $\mathrm{Csp}{ }^{2}$ atoms of the double bonds are also found in (I). The $\mathrm{C} 27-\mathrm{C} 28-\mathrm{C} 29 \quad\left[118.8(2)^{\circ}\right], \quad \mathrm{C} 27-\mathrm{C} 28-\mathrm{C} 33$ $\left[124.3(1)^{\circ}\right], \quad \mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 27 \quad\left[121.7(2)^{\circ}\right], \quad \mathrm{N} 3-\mathrm{C} 21-\mathrm{C} 22$ $\left[122.9(2)^{\circ}\right], \mathrm{N} 3-\mathrm{C} 21-\mathrm{C} 26\left[118.1(2)^{\circ}\right]$ and $\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 6$ [121.1 (1) ${ }^{\circ}$] bond angles are close to the ideal value of 120°, while the $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 27$ [127.5 (2) ${ }^{\circ}$] and $\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 4$ [128.3 (2) ${ }^{\circ}$] angles are more distorted, as a consequence of the strain induced by the $\mathrm{C} 6=\mathrm{C} 27$ and $\mathrm{C} 5=\mathrm{N} 3$ double-bond linkages. The sum of the angles around atom N 2 is 351.2° and the deviation of atom N 2 from the $\mathrm{C} 1 / \mathrm{C} 3 / \mathrm{C} 9$ plane is 0.234 (1) \AA, indicating its pyramidal nature.

In the azabicyclo[2.2.2] system, all three six-membered rings adopt boat conformations, with asymmetry parameters (Nardelli, 1983) $\Delta C_{\mathrm{s}}(\mathrm{C} 1)$ of 0.019 (1), 0.023 (1) and 0.040 (1) for the rings $\mathrm{C} 3 / \mathrm{N} 2 / \mathrm{C} 1 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 4, \mathrm{C} 1 / \mathrm{C} 4-\mathrm{C} 8$ and $\mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 3-$ C6, respectively. The torsion angles C6-C27-C28-C33 and $\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 21-\mathrm{C} 22$ are -37.1 (2) and $-80.8(2)^{\circ}$, respectively. The benzene ring substituted at N 2 is almost coplanar with the nearest arm of the azabicyclo[2.2.2] ring system, with a $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$ torsion angle of $7.6(2)^{\circ}$, while the benzene ring attached at atom C 3 is twisted, with a $\mathrm{C} 4-\mathrm{C} 3-$ $\mathrm{C} 15-\mathrm{C} 16$ torsion angle of 72.2 (2) ${ }^{\circ}$.

In the absence of H -donating groups, the crystal packing (Fig. 2) is stabilized by van der Waals forces.

Figure 2
A packing diagram for (I), viewed down the c axis. H atoms have been omitted.

Experimental

To a solution of N-benzylideneaniline (5.5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at room temperature, $\mathrm{ZrCl}_{4} \quad(10 \mathrm{~mol} \%)$ and cyclohexen-2-one (5.5 mmol) were added sequentially and the mixture was stirred for 6 h . After completion of the reaction, as indicated by thin-layer chromatography, the reaction was quenched with water, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and washed with water $(10 \mathrm{ml})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{ml})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield a darkbrown residue, which was purified by column chromatography using $2-10 \%$ ethyl acetate in hexane as eluent, to obtain the pure product.

Crystal data

$\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2}$
$M_{r}=468.62$
Monoclinic, $P 2_{1} / n$
$a=14.1805(8) \AA$
$b=10.1822(5) \AA$
$c=18.3636(10) \AA$
$\beta=91.080(1)^{\circ}$
$V=2651.0(2) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX CCD areadetector diffractometer

ω scans

Absorption correction: none
18613 measured reflections 4659 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.127$
$S=1.03$
4659 reflections
357 parameters
H -atom parameters constrained

$$
D_{x}=1.174 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 6129 reflections
$\theta=2.2-24.2^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$

3617 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-16 \rightarrow 16$
$k=-12 \rightarrow 12$
$l=-21 \rightarrow 21$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0649 P)^{2}\right. \\
\quad+0.3061 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }= \\
=0.14 \mathrm{e}^{-3}
\end{gathered}
$$

organic papers

Table 1
Selected bond lengths (\AA).

C1-N2	$1.4770(19)$	C6-C27	$1.337(2)$
C5-N3	$1.272(2)$	C29-C30	$1.373(2)$

H atoms were included in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})$ $=1.2-1.5 U_{\text {eq }}$ of the parent atom.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

MM thanks the Council of Scientific and Industrial Research (CSIR), India, for the award of a Senior Research Fellowship.

References

Birkinshaw, T. N. \& Holmes, A. B. (1987). Tetrahedron Lett. 28, 813-816.
Birkinshaw, T. N., Tabor, A. B., Holmes, A. B., Kaye, P., Mayne, P. M. \& Raithby, P. R. (1988). J. Chem. Soc. Chem. Commun. pp. 1599-1600.
Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.28a) Bruker AXS Inc. Madison, Wisconsin, USA.
Mahesh, M. (2005). PhD thesis, Indian Institute of Chemical Technology, Hyderabad, India.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sonar, V. N., Parkin, S. \& Crooks, P. A. (2003). Acta Cryst. E59, o2010-o2012.
Sonar, V. N., Parkin, S. \& Crooks, P. A. (2004). Acta Cryst. C60, o659-o661.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

